1945 Innehåller: Fuksäkra tegelmurverk.
100.000.000

TEGEL

är numera vår leveransförmåga under ostörd tillverkning.

ENDAST 70 % HÄRAV
har på grund av rådande förhållanden kun- nat levereras de senaste åren.

FULL PRODUKTION
betyder god tegeltillgång.
Vi hoppas att under det kommande året kunna betjäna våra kunder bättre än nu.

Tegelbruken Försäljnings AB.

STOCKHOLM

UPPLAGA: 6700 ex.
Absorptionsegenskaperna och vägg-
tjocklekenas inverkan på den laterla
infiltrationen genom massiva väggar.

Efter analysen av murbruket i egen-
skap av fogtätande och bärande under-
lag bör uppmärksamheten rikta-
mts förhållandevis större på absor-
ptionssegenskaperna hos de i
tegelmurverket ingående teglet och
murbruket samt väggstjocklekenas inver-
kan.

(A) Absorptionsegenskaperna hos de
ingående komponenterna.

1. Tegel. — Absorptionsvärdena för
teglet anges variera mellan under 1
vikt % (sintrat tegel) upp till 15 vikt %
och däröver. Frågan blir då: i vilken ut-
sträckning kunna dessa värdén tjäna
som vägledning för erhållande av fukt-
säkerhet? Vattenabsorptionen (vanlien-
uttryckt i vikt %) mättes genom väg-
ning av en tegelsten före och efter ned-
sänkning i vatten under en bestämd tid
(normalt 5 tim. i kokande vatten eller
24 tim. i kallt vatten). Den ger ett mätt
på antalet hålrum både stora och små
(från synliga sprickor ned till kapil-
lära porer) som äro åtkomliga från
ytan under normala förhållanden. Här-
av erhålls en uppfattning om "sug-
kraven", vilket ju till stor del påverkar
bindningen mellan tegel och bruk och
därmed fogarnas vattendåighet.

Då teglet visar en rel. hög absorptions-
förmåga är det vanligt att "hämma" en
del av sektionen (50—70 % av absor-
ptionen) genom fuktning och i synnerhet
da ett "sugkänsligt" bruk användes (se
murbruk). Detta är ej nödvändigt då
teglet har låg absorptionskoefficient
(ringa sugning). Absorptionsvärdet ger
emellertid ingen kvantitativ uppgift på
permeabiliteten, d. v. s. vattnets benä-
genhet att tränga från en yta av teglet
till motstående yta, vilket ju beror först
och främst på porernas art och fördel-
ing. Man kan sålunda tänka sig en
tegelsten där öppningarna på ytan är
blindgångare, så att en viss absorption
erhålles utan permeabilitet. Ett tvärsnitt
skulle erbjudas bilden av en kart-
lagd ö med diverse floder och inlopp
inrättande mot centrum, men utan
genomgående passage från kust till
kust. Det mycket sega teglet av skiffer-
lera, som tillverkas både i Stalfordshire och på andra ställen i Storbritannien är känt som sintrat eller "ingeniörstegel" (brobyggnad, tunnlar m. m.) och äger denna blindgångsstruktur. Sintringen, som äger rum under brämnin, har tätatt till alla kommunicerande mellanrum, vilka ursprungligen finns omkring lerparkiklarerna. Sintrat tegel är sålunda trots en låg men bestående absorption (från 0.7 % till 2.5—3 %) ogenomträngligt och användes i omfattande utsträckning i fuktäkra skikt. Hos större delen av de tegelsorter som har visat sig lämpliga för yttarbeten (fasadareben) är tillslutningen av porerna under brämnin inte lika fullständig som vid de sintrade sortererna. Resultatet blir utan tvivel, att förbindelse kommer att uppstå mellan några av de icke tillslutna porerna, så att en total ogenomträng- lighet icke erhålls.

Sådana förbindelser kan inte anses vara direkta, lätt genomflytna kanaler, utan fastmer ett i olika plan slingrande rörverk, som än vidgas än smålar av och nästan tillslutas. Detta ökar avsevärt det inträngda vattnets väg från den ena ytan till den andra. Dessutom kommer de markerade förändringarna i olika tvåsinn, som uppståt genom slingorna, att bidra till bildandet av luftpoproppar, vilka icke motståndet. Faktum är att vatteninfiltration sker rel. långsamt genom mänga av de sorter av hårdbränt lertegel, som vanligen användas för fasadareben.

Diskussionen förklarar varför många tekniker och forskare nu för tiden, som undersöka brända lerprodukters fysikaliska egenskaper, är emot ett erkännande av afffor för total absorption, som definitiv regel, och varför de önska åstadkomma ett prov, som kan ge ett tillfredsställande mätt på tegelkonstruktioners permeabilitet. Mätningar av permeabiliteten av de enskilda tegel-

stenarna äro av ringa värde (utom vid fastställandet av läckagemöjligheter genom bindare i 9 tum-väggar) emedan, vilket visas senare, närvaron av ett läger bruk mellan två stenar har en utomordentligt retarderande effekt på vatteninfiltrationen. Då vädereksförhållandena äro sådana att en fullständig mättning av väggenheter (bindarna i 9 tum-vägg) kan uppkoma måste an- tingen hålmskonstruktioner eller alternativt, men icke alltid, tjockare väggar användas.

2. Absorptionsegenskaper hos murbruk.


(B) Absorptionsegenskaper hos tegelmurbruksförband.

Fyra tegelstenar A, B, C, D, murades med olika cementbruksblandningar till ett fyrkantigt block, vilket framgår av
LOMMA HANDSLAGNA FASADTEGEL
I GULT OCH GULGRÖNT

DEL AV BYGGNADER VID "KOBARNES VÄG", GÖTEBORG, fasadbeklädda med Lomma gröngula, handslagna fasadtegel.

A.-B. LOMMA TEGELFABRIK
LOMMA
TEL. 2 o. 4
SLOTTSMÖLLANS

handslagna fasadtegel

är sedan århundraden känt för sin höga kvalité och vackra mörkröda färg.

Wallbergs Fabriks Aktiebolag
Tel. växel 3700 Halmstad Tel. växel 3700

MÅNGHÅL

Tegel

NUTIDENS och FRAMTIDENS BYGGNADSMATERIAL försäljes av

GÖTEBORGS TEGELAKTIEBOLAG
MAGASINSGATAN 3. TEL. 1313 68, 1313 48
bilden (fig. 4) och fästes in för att bilda ena väggen i en vattenbehållare.

Tid togs till fuktfläckar började uppstråda på löpstenysytorna av B, D och M' och uppges för två sorter tegel X och Y (Y med rel. hög absorption) i tab. IV. Man lägger märke till att frånsett blandningsproportionerna, fogen M' genomfuktades långt innan stenarna visade tecken på fuktighet. Ett annat prov antyder att det högre moständet vid A—VV'—B och C—VV'—D beror på någon sorts kontaktmoständ vid beläggningen mellan sten och bruk. I detta prov undersökes på samma sätt en sten, ett 1/3 tum lager av bruk samt ett 2-stensblock såsom A—V—B. Infiltrationstiderna i min. för det absorberande teglet (Y) framgår av försök 2.

**Tabell IV.**

<table>
<thead>
<tr>
<th>Tid i min. för genomträngning av 4-stensblock.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td><strong>Vid M</strong></td>
</tr>
<tr>
<td><strong>Bruk</strong></td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Y</td>
</tr>
</tbody>
</table>

**Förslag 2.**

<table>
<thead>
<tr>
<th>Genom enbart tegel</th>
<th>Genom enbart 1/3 tum lager av bruk</th>
<th>Genom A—V—B</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Blandning</strong></td>
<td>1:2 1:4 1:6</td>
<td>1:2 1:4 1:6</td>
</tr>
<tr>
<td>4</td>
<td>14 14 8</td>
<td>523 329 197</td>
</tr>
</tbody>
</table>

Om det inte förelåg "kontaktmoständ" vid gränsytorna mellan sten och bruk kunde man vänta sig att siffrorna i sista kolumnen skulle vara lika med tiderna för 2 stenar och en fog, d. v. s. 22, resp. 10 och 8,8 minuter. Dessa förslag, det måste ihågkommas, visa inte endast den fuktindränande effekten av välmurade lodräta fogar, parallella med väggytan, utan antyda även att fogen MM' måste anses vara en lättgenomtränglig del av strukturen.

Erfarenheten och olika regnprov, på särskilda väggar utförda på forskningslaboratorier visa emellertid att det är de lodräta fogar, vilka nå en ytteryt, som är de mest kritiska.

(C) Väggfjocllek.

En ökning av tjockleken på massiva väggar måste verka öka på infiltrationsmoständet på flera sätt. Den ökade tjockleken betyder ett längre avstånd för det inträngande vattnet och
en ökad absorberande förmåga (svamp-effekt) som åtminstone delvis måste satisficeras innan vattnet kan rinna vidare. Om vi jämför 1-stensväggar (9 tum) och 1½ stensväggar (13,5 tum) så ha de senare direkt vägar, med ett minimum av längd och motstånd mot infiltrationen, endast genom de vägräta fogarna. De tunnare (9 tum) väggarna ha dessutom liknande ömtåliga ställen vid varje "bindare" samt de lodräta fogarna på ömse sidor om desamma.

**Ytterligare faktorer, som inverka på massiva ytterväggars motstånd mot infiltration.**

Det känta fakten att det finns tusentals massiva fuktäska väggar i trakter med mättlig nederbörd visar att det finnes många platser där ett skyddat läge och en efter regnet torkande vind bidrager till att förhindra fukten, att till följd av muren mättning med vatten, träna genom densamma. Men även på sådana platser är det många faktorer som man i praktiken måste taga vederbörlig hänsyn till, förutom utvändjandet av ett väl tätande bruk. De viktigaste därribland äro:

I. **Beträffande alla ytterväggar — arbetsets utförande och fogarnas fyllning.**

II. **Beträffande oputsade ytterväggar — överarbetning och fogstryckning.**

III. **Konstruktionsdetaljer som taklistor, stupränningar, fönsterbleck m. m. vilka tjänar till att avleda eller förminska det över muryn männen vannade vattnet.**

IV. **Beträffande putsade väggar — arbetsets karaktär och metoden för putesens anbringande.** Endast den sistnämnda faktorn behandlas mera ingående nedan.

**Utvändig putsning.**

Med därför avsedda tegel kan erhållas en fasad med otaliga nyanser, färgskiftningar och texturer, under det att man med putesning endast kan åstadkomma ett fåtal fadda pastellnyanser, vilka för övrigt med tiden endast bli gråbruna och träkiga i motsats till teglet, som patineras.

En putsyta kan därför endast bibehålla sitt ursprungliga estetiska skick på byggnader på landet, avlägsna från smutsstäd. En estetiskt acceptabel, riktigt sammansätt och rätt utförd puts på utsidan av en välbyggd massiv tegelmur kommer inte att minska, utan snarare att öka den resistentens mot infiltrationen, som ett väl utfört arbete ger. Putsen får emellettid på inga villkor tas i anspråk för att dölja ett icke fullgott material eller dåligt utfört arbete. Ingenting kan strängare fördömas än den sorts slarvigt utförda fuskbyggen där putes användes huvudsakligen för att dölja sekunda tegelstens sammanhållna endast av enstaka murbruksklickar. Lioksom ett taggrådshinder framför en militär ställning, kan en god puts effektivt hindra "genombrottsförsök" men har den väl passerats, beror genombrotnets framgång på själva ställningens särbarhet.

I den följande diskussionen om putesning antagas därför, för det första, att teglet, som användes är utom i estetiskt hänseende likvärdigt med fasadtegel i fråga om brännning samt fritt från brännspickor m. m. och för det andra att det förenats väl med fulla fogor och ett lämpligt bruk.

**Putsens sammansättning samt arbetsets utförande.**

I allmänhet är utvändig puts avsedd att fungera på ett eller två sätt, d. v. s. *an-tingen* som ett permanent, obrutet, ogenomträdligt lager, vars verkan kan jämföras med en perfekt gummirengrock, *eller* som ett lager med viss porositet, som ändå har ett "kontaktmot-
ständ” mot infiltration vid gränsytan mellan putsen och murwerk, analogt med den tidigare nämnda vid murwerk med fulla fogar: kort sagt, ett lager som verkar mer som en överrock av tweed än som en regnrock. En granskning av i vilken utsträckning dessa två sorters puts ha utvecklats är önskvärt.

Då den första typen, om den kan erhållas, vore mer effektiv ur fuktsäkerhetskynpunkt än den andra har i synnerhet i Storbritannien mycket möda nedlagts för att framställa ogenomtränglig puts. De tidigaste försöken i denna riktning representeras av den numera omoderna målade putsen, från början av 1800-talet, där ett jämmt påslag av kalkbruk (porös) tjänade som underlag för färglagren, vilka i verkligheten bildade det (ursprungligen) obrutna impermeabla överdraget.

På grund av solljuets, atmosfärilienas och andra förstörande faktorers nedbrytande inverkan på färginnan uppstå efter ett par år blåsbildning, flagning och sprickbildning. Som följd därav kommer det från oskadelade områden avrunna vattnet att intränga i dessa förstörda partier och genomdränka putsen innanför, lika lätt som det sker genom en reva i en regnrock. Å andra sidan kan vattnet inte avdunstas snabbt genom de exponerade ställena av underlaget och en utpräglad tendens till fuktanhopning erhålls. För funktionellt ändamål måste man därför, till skillnad från dekorativa, vidkännas utgiften med periodiska reparationsmålningar.


kan under den ofrämkomliga normala påfrestningen angripas och bilda förbindelser till den inre putsmassan.

Möjligheterna att f. n. erhålla en puts av den första typen är tydliggen ringa och det återstår att undersöka den andra typens egenskaper.


**Fasaders beklänad med taktegel.**

På de senare åren har en märkbar utveckling av den traditionella taktegel-täckningen åtg åt rum.

En med omdöme täckt fasad ger inte endast en estetiskt förhöjd anblick, utan bildar ett högst effektivt hinder mot sidoinfiltration och är synnerligen lämplig för att skydda sådana utsatta ställen som burspråk, vind- fönster m. m. samt att ge kontrasteffekt mot en ljusare bottenvävning.

För att få maximal effektivitet med denna sorts fasadtäckning börja emel lertid vissa åtgärder iakttagas. Två metoder för fästetande av plattorna finnas:

a) De kunna spikas direkt i bruksfogarna eller ännu bättre b) hänga som vid takläggning på läkt spikade mot väggen.

Det finns flera nackdelar med den första metoden. Med ett vanligt tegelskift (3 tum) är endast en 3 tums avstånd möjligt vilket med vanliga 10½ tum plattor ger en onödigt stor övertäckning och är därtill ganska oekonomisk. Spikarna kunna dessutom lossna i fogarna, så att plattorna kunna falla ned. Till detta kommer att en direkt kontakt er-
A.-B. Nabbensbergs Tegelbruk
Vänersborg - Tel. 5

MÅNGHÅLSTEGEL
Volymvikter 1.0–1.2

Hög värmeisolering  Hög tryckhållfasthet

Tenggrenstorps Tegelbruk
VÄNERSBORG  Tel. 1251, växel

MÅNGHÅLSTEGEL
LÅGT VÄRMEGENOMGÅNGSTAL
HÖG TRYCKHÅLLFASTHET

TILLVERKNINGSKAPACITET:
DIV. MURTEGEL .... 5.000.000
TAKTEGEL ........ 3.000.000
DRÄNERINGSRÖR .... 1.500.000
Nedanstående diagram äro utarbetade på grundval av kontinuerligt utförda kontrollprov vid vår tillverkning av 1/4-tegel under tiden 27/5 1943—9/1 1945. Proven äro inlagda i diagrammen i tidsföljd.

Det övre diagrammet avser volymvikt och det undre tryckhållfasthet.

Diagrammen avse att illustrera den jämnhet ifråga om volymvikt och tryckhållfasthet som uppnäts.

Av kurvorna för volymvikt kan utläsas:
1) att medelmakrurvan, som är avgörande ur normalbestämmelsernas synpunkt, aldrig överskrider den tillåtna gränsen.
2) att skillnaden mellan lägsta och högsta volymvikt inom samma prov aldrig överskrider 7 % av medel-volymvikten och att största differensen under nära två år inom samtliga prov är 11,4 %.
3) att denna skillnad oftast inskänker sig till 3—4 %.

Av kurvorna för tryckhållfastheten kan utläsas:
1) att medel-tryckhållfastheten hos proven endast en gång går under den fastslagna gränsen om 140 kg/cm² och då endast med 6 kg, till 134 kg/cm².
2) att kurvan för samma sten i ca 50 % fall ligger över den för medeltalet fastslagna gränsen och i övriga fall utom ett häller sig över den för 1,4/115-tegel fastslagna medeltalsgränsen 115 kg/cm².
3) att kurvan för den starkaste stenen endast i 4 fall mera avsevärt översätter den genomsnittliga max.-kurvan.
4) att skillnaden mellan högsta och lägsta värde oftast ligger mellan 7—20 % av medeltryckhållfastheten. Endast i 5 fall överskridas dessa %-tal.

Sammansättning:
På grund av de jämna volymviktskurvorna kan man med största förtroende räkna med att beräknade k-värdet för 1/2-stens mur eller k = 0,83 också kommer att erhållas vid användande av vårt 1/4-tegel.

På grund av de för murtegel osedvanligt jämna tryckhållfasthetskuvorna kan en konstruktor med största förtroende med detta tegel utnyttja de i anvisningar till normalbestämmelserna angivna tillåtna påkänningsarter eller för 1/2-sten i kalkbruk 8,5 kg/cm².
hålles mellan plattor och mur, varvid fukt kan spridas in i väggen om plattor-
a nå alltför porösa och endast plattor med ringa porositet kunna därför an-
vändas med säkerhet.

Med den andra metoden uppsättas lod-
råta ströläkt på väggen som stöd för de vanliga tegelläkten med ett mellan-
rum, som ger en ekonomisk övertäck-
ning (2½ tum för 10½ tum platta) eller den särskilda övertäckning, som tillverkaren rekommenderar för de spe-
cciella sorterna. För att förstärka stödet kan man vanligen använda en spik per
platta. Läkten tjäna som ett varaktigt fäste för spikarna. Alla plattor av god
kvalitet kunna användas, då luftmellan-
rummet på baksidan ger tillräcklig ven-
tilation för att förhindra mättning och ev. frostverkan. Dessutom verkar luften
hindrande för fuktspredning till tegel-
muren, utom på de ställen där läkt
finnas. Då man önskar erhålla hög-
sta möjliga varaktighet och imper-
meabilitet hos virket, ribborna m. m. är det lätt att använda sig av
kreosotoljebehandling med den enkla
behållarmetoden, som användes vid
Forestproduktornas forskningslab-
atorium. (Trävirket ställer i en öppen behållare med Kreosotolja, som värmes
långsamt ett par timmar, därefter av-
svälvande under natten. Den i porerna
befintliga luften drar vid avsvalvandet
ihop sig och absorberar kreosot in i fi-
brerna). Fransett dess konserverande
verkan kommer kreosoten att hindra
fuktspredning till tegelmuren under
ovbrutet ogynnsamma väderleksför-
hållanden då tegelplattorna kunna mät-
tas.

Att översta delen av den lodrätta tegel-
täckningen bör skyddas med stänkbleck
eller annan lämplig anordning, behöver
väl knappast påpekas.

II. Nedåtgående inträngande.
Varje icke lodrät yta bildar en uppsam-
lingsplats för regn eller snö. Det är
sålunda nödvändigt att ytan själv är
ogenomtränglig eller att den närmast
under liggande konstruktionen isoleras
med ett för fukt ogenomträngligt ma-
terial. De ställen på en byggnad, för
vilket detta gäller, är följande:

a) Takytan; b) Skorstenar; c) bröst-
värn; d) Fönsterbräden, murlist
m.m.

a) Takytan.
Då tegelmurverk aldrig användas för
ett taks huvudytorn, faller en bedömning
av de olika problemen vid planering
och konstruktion av vattenisolerade tak
utanför ramen för denna framställning.

b) Skorstenar.
Då skorstenar är utsatta för nederbörd
i form av regn eller snö på alla ytor,
ha de en särskild benägenhet att leda
fukt in i en byggnad. Om de sitta på
ett plant tak, kunna de naturligtvis be-
handlas på precis samma sätt som tegel-
murverk vid markytan, genom insätt-
ning av ett fukt säkert skikt bestående
av skiffer, sintrat tegel eller bly i andra
skiktet ovanför taknivån. Företrädesvis
komplettas denna konstruktion med
e en täckplåt, som vises ned och avleder
vattnet till takytan.

För skorstenar på sneda tak är förhåll-
landet mer komplicerat. För det första
är det nödvändigt att göra övertan så
ogenomtränglig som möjligt för vatten.
Vanligen läggs härvid ett tätande bruk
på skorstenens översida och bruket läg-
ges med fall mot skorstenssidorna. Bru-
ket är vanligen cementbruk (1:2) och
har sålunda en tendens till sprickbild-
ning vid krympning i synnerhet under
inverkan av de temperaturförhållanden,
som kunna uppstå. Bästa sättet att lösa
TEGEL

denna svårighet är troligen att förstärka denna betongkrans genom armering med rundjärn eller träd duk. Armeringen måste i så fall ingjutas ordentligt och får icke på något ställe ligga närmare än ¼ tum från den utsvatta ytan.

Den del av skorstenens murverk, som ligger ovan takets yta, bör uppföras av prima fasadtegel eller annat frostbeständig tegel och muras i kalkcementbruk (1:1:6) med fulla horizon tella och vertikala fogar, väl utformade till snedfogar. Ett utskjutande stänkblock bör insättas under skorstenens betongkrans för att avleda vattnet från det vertikala murverket.

För att förhindra att det vatten, som rinner nedför de vertikala murytorna, skall intränga vid skärningen mellan skorsten och tak, börca skydd av blåplåt anbringas.

För skyddat belägna hus med korta skorstenar räcker det vanligen med de föregående åtgärderna för att förhindra en större vatteninträngning. Detta gäller i synnerhet om den del av skorstenen, som ligger i vindstrymmet omedelbart under taket, lämnas fri och tillräckligt ventilerad, så att eventuellt fuktighet, som sprider sig längs skorstensmurarna, får möjlighet att av dunsta i stället för att fortsätta ned till innertak och byggnadsstomme. Vare sig utrymmet omedelbart under taket skall bebos eller icke, bör man aldrig behandla denna del av skorstens omedelbart under take, lämnas fri och murarna med gips eller puts av tät beskaffenhet. Där det är nödvändigt med dekoration, bör man använda ett magert, poröst bruk, som underlättar uttorkning eller olje-tempera, som föyrnas periodiskt.

Då väderleksförhållandena emellertid äro svåra och då man eftersträvar absolut immunitet även under de svåraste omständigheter, måste man lösa problemet genom att anordna ett fuktssäkert skikt genom skorstenen just ovan taknivån.

En utväg, som även ger skorstenen maximal styrighet mot vindtrycket, är att använda ogenomträngligt sintrat tegel, antingen i form av ett vattenlätt skikt längs taklinjen eller att uppföra (Dekorativt sintrat fasadtegel med detta Brittiska standardmått finns nu tillgängligt på ett flertal platser i landet) hela den del av skorstenen, som ligger ovan tak med 2" tegel.

Frånsett den estetiska synpunkten kan man inte reservationslöst rekommendera anbringandet av puts på skorstenar. Om man anbringar en tät puts med stark benägenhet för sprickbildning, håller sig skorstenen fuktig längre än nödvändigt och blir mer utsatt för frostens inverkan. Om man å andra sidan puttar med kalkcementbruk i blandning 1:1:6, som föreslagits för vanliga väggar, erhåller man optimalt motstånd mot infiltration samt en snabb uttorkning, men icke desto mindre kan den erhålla frostskador till följd av de svåra väderleksförhållandena, som förekomma omkring skorstenar.

c) Bröstvärn.

Bröstvärnet har alltid ansetts vara en svag punkt i fråga om fuktinfiltration, eftersom det gäller plana eller lutande tak. Ett bröstvärn kan i viss utsträckning anses vara spegelbilden av grundstenen och kan behandlas i likhet med denna. Ett fuktssäkert skikt insättes ovanför förbindelsen mellan bröstvärtet och taket och vidare nedåt för att skydda takkonstruktionens upplag. Denna princip framgår av fig. 5. Alternativet enligt fig. 6 är ej att rekommendera, trots dess enkelhet, emedan (vilket framgår av figuren, där
den tänkta vattenavgivningen inritats) detta alternativ ökar mättingen hos den del av murverket, som gränsar mot takkonstruktionen. Varje annan anordning, som minskar den av bröstvärnet absorberade vattenmängden, är naturligtvis fördelaktig. Av dessa är den effektivaste troligen där avtäckningen lägges på ett enkelt skifferlager lagt så att ett kontinuerligt skikt av skiffer ligger under varje fog i avtäckningen. Detta bör dimensioneras så, att en tydlig droppkant erhålles, och denna skall skjuta över bröstväternets vertikala profil. En å bröstväterns inre yta anbringad puts har ofta med fördel använts för att reducera vattenabsorptionen.

Stundom utföras låga bröstvärt med ett stånkbleck, som inlägges under muravtäckningen och drages ned till takrännans överkant eller stundom med en asfaltbeläggning på bröstväterns insida.

III. Uppåtgående inträngning av markfuktighet.

Att förhinder markfuktighet att intränga uppåt är antagligen ett av de mera lättlösta problemen, som möta arkitekter och byggmästare. Under förutsättning att ett lämpligt fuktsäkert skikt insättas över markytan i alla väggar, (givetvis inklusive väggar på grundbalkar) som stå i kontakt med marken, förhindras en infiltration uppåt. Fördelarna med de olika materialtyperna (skiffer, sintrat tegel, blåplåt, koppar och bitumenprodukter) för fuktsäkra skikt, som är i allmänt bruk, ha redan analyserats tidigare. Endast de fall kommer här att behandlas, där en kortslutning av det fuktsäkra skiktet måste undvikas.

Under senare år ha ett flertal fall av invändiga fuktsskador, särskilt inom vanlig husbyggnad, felaktigt skylts på ett bristfälligt tegelmurverk, medan fukten i själva verket kommit från marken via de massiva betongbjälklagen, som använts för att slippa schaktning och spara trävirke. (För bjälklag.) Det är alldeles felaktigt att tro, att betong är helt ogenomtränglig för fukt.

Om ovantytan av ett massivt betongbjälklag, som står i kontakt med en vägg sålunda ligger ovanför det fuktsäkra skiktets nivå i väggen, kan en infiltration uppåt åga rum via betongen. Det är därför nödvändigt att insätta ett kontinuerligt lager av fuktsäkert material mellan bjälklaget och väggytan, som visas i fig. 7. Detta gäller lika mycket massiva väggar som hälmlurs-
konstruktioner. Att ha ett avstånd mellan väggen och bjällklaget är inte en sund lösning på problemet, då det är högst troligt, att mellanrummet för eller senare kommer att fyllas med byggnads- eller hushållsavfall och damm.

![Diagram](image)

**Fig. 7.**

** Tillämpning av det föregående på halmurskonstruktioner.**

Medan de allmänna principer, som framkommit i praktiken och som varit vägledande vid undersökningarna, har visat sig bestämmande för konstruktionen av massiva tegelmurverk och även tillämpats på halmurskonstruktioner, är det flera betydelsesfulla faktorer, viktiga för de senare, som förhörna att uppmärksammas.

**Principerna för halmurskonstruktioner.**

Effektiviteten hos en halmursvägg, som består av två skilda väggar, åtskilda av ett luftmellanrum på vanlig 2–3 tum, beror på hur hög grad mellanrummet verkar hindrande för det regn, som absorberats från ytterväggen till innersväggen. Ytterväggen kan anses fungera som en regnrock eller en tvättgummas förklade, och så länge det inte finns någon vattenledande "brygga" eller kontakt mellan yttre och inre murarna, kan den förra bli helt genomdräckt utan att sprida fukt till den inre. Denna möjlighet av en ofarlig total mätning får emellertid inte tas som skäl för att bygga läckande ytterväggar. I praktiken är det emellertid nödvändigt både att binda de två murarna fastare tillsammans hör och van av hållfasthetskriterium och att åstadkomma kontakt dem emellan vid öppningar, såsom fönster och dörrar, för att erhålla en kontinuerlig yta. I verkligheten är det nödvändigt att omsorgsfullt behandla dessa potentiella "fuktbryggor" mellan ytter- och innersvägg så, att vatten inte kan tränga in till det inre av byggnaden genom dessa kontaktställen. Det är denna "nödvändiga omsorg", som avses i orden "ordentligt byggda", som används i den tidigare nämnda rapporten från Ministry of Health Departmental Committee och i liknande hänvisningar till halmurskonstruktioner i de redogörelser, som publicerats av Building Research Station.

De delar av en "icke ordentligt byggd" halmur, där fuktighet kan intränga till innersväggen kunna delas upp i fyra grupper, nämligen:

a) från marken;

b) från yttre muren via bruk, som sammanfaller på förankringarna mellan murarna;

c) Från yttre muren vid ställen, där en kontakt mellan ytter- och innersvägg är nödvändig t. ex. vid taklister, bjälkar, valv över öppningar, bjälklag som gå genombrott mellan innersväggen.

d) Genom kontakt med takkonstruktionen vid exempelvis taklister, gastrar eller liknande konstruktioner såsom ex. vid bröstvärm.
Landets största tillverkare av tegelmellanväggsplattor. Vi leverera Walla-plattor över hela Sverige.

Fråga honom — han vet besked

att VALLA-plattorna äro lätt att hugga och så äro de raka*...

7
goda egenskaper hos våra mellanväggsplattor
1 Brandsäkra
2 Ljudisolerande
3 Volymbeständiga
4 Spikbara
5 Fria från fukt
6 Kemiskt neutrals
7 Lätta att hugga och bila


* Vår patenterade tillverkningsmetod gör att våra plattor äro absolut raka.

TEGELBRUKSAKTIEBOLAGET WALLA — Katrineholm
Specialité: TAKTEGEL
Årstillverkning 10.500.000 st.

HEBY TEGELVERK
SKÖLDBERG & Co.
KOMMANDITBOLAG
Telefon: Nämnanrop Heby Tegelverk

A.-B. Lomma Tegelfabrik
Lomma. Tel. 2 & 4.

Vi uppföra fabrikksskorstenar.
Reparationer utförs.

Bland byggda skorstenar märkas:
Holtn A/R, Kotka, Finland 87 m.
Orebro Pappersbruk, Orebro 75 m.
A/B Mölnbacka Tryskil, Deje 65 m.
Svenska Sockerfabriks A/B, Årjäng 61 m.
Lidköpings Sockerfabrik, Lidköping 50 m.
Adolf Bratt & Co, Göteborg 50 m.
Fengersfor A/B, Tösse 50 m.
Munksjö A/B, Jönköping 45 m.
A/B Papyros, Mölndal 43 m.
Sandvikens Järnværks A/B, Sandviken 40 m.
Surte Glasbruk, Surte 40 m.
Malmöhus Läns Sjukvårdsinrättningar, Lund 38 m.
Långasoretet, Karlstad 35 m.
Karshamns Elektricitetsverk, Karshamn 35 m.
Statens Järnvägar, Boden 30 m.

Ni som skall bygga för framtiden använd
och anlita
TEGELKONTORET I BORÅS
Tel. Växel 17170
a) Hålmurkonstruktionen vid markytan.

Liksom fallet är vid massiva väggar, är det viktigt att man insätter ett vattenisolerande skikt i lämplig höjd, vanligen 2—3 skift ovan marken i hålmurens båda väggar, samt att samtidigt se till att:

1) hålmuren fortsätter minst ett skift (3 tum), gärna mer nedåt förbi det vattenisolerande skiktet;

2) det vattenisolerande skiktet i den inre muren inte görs ineffektivt genom att närliggande konstruktioner ovan skiktets nivå stå i kontakt med den inre väggen, exempelvis massiva betonggolv, som står i direkt förbindelse med marken.

Där ytterytan kan bli utsatt för stäk, kan det vattenisolerande skiktet i yttre muren höjas något.

Den absoluta och allvarliga fuktbrygga, som kommer att bildas mellan yttre och inre murarna, om hälrummet avslutas felaktigt vid eller ovanför det fuktssäkra skiktets nivå, framgår av fig. 8.

Då en närliggande konstruktion, som ett massivt betonggolv, står i kontakt med inre väggen, bör ett inträngande av fukt från marken genom betongen förhindras på sätt som visas i fig. 7. Att enbart ha ett mellanrum, där det vertikala fuktsäkra skiktet visas i figur, är otillräckligt, då ett sådant mellanrum har en benägenhet att fyllas av skräp, som slutligen bildar en fuktbrygga.

b) Väggföranbringar i hålmurkonstruktioner.

Brothålfastheten för enbart tryck hos 4½ tuma tegelmurar, som användes i många hålmurkonstruktioner är, vilket framgår av siffrorna publicerade i B.R. Specialrapporten nr 22, vida större än vad som vanligen erfordras i praktiken.

Utan förstärkning kan emellertid deras slankhet göra murverket mindre motståndskraftigt mot excentriska eller laterala påfrestningar, sådana som ex. sättning eller tryck, som uppkommer då ett träbjälklag utvidgar sig till följd av vattenabsorption.

Av denna anledning förbindas de båda vägarna genom bindare, som utgör en tryckfördelande förbindelse över hålrummet. Dessa bindare kunna emellertid under byggnadsarbetet bli samlingsplatser för murbrukssavfall, som sedan utgörar övergångsställen för fukt. Se fig. 9:
För att förebygga denna och liknande bildningar av murbrukbsbyggor i botten på hålrummen kan man använda sig av tvenne enkla anordningar, som kunna benämnas "förebyggande" resp. "botande". Den i praktiken vanligen använda "förebyggande" metoden är den med den flyttbara plankan. Denna består huvudsakligen av en planka, som är något smalare än hålrummets bredd och kan företrädesvis vara klädd med gammal säckväv eller bomullsväv och hänges upp i mellanrummet just under det skift, som lägges för att därmed ta upp allt fallande bruk på ovansidan.

Då murningen fortskridit högre upp, flyttras plankan genom upphängningsrepet och man kan ta upp den då och då för att avlägsna avfallet. Om säckväven på plankan fyller ut mellanrummet mellan plankan och murynan kommer den att skrappa av murbrick från fogar i lägre liggande skift, vilket murbrick pressats ur fogarna på grund av den ökade belastningen.


c) Konstruktionen av fuktsäkra öppningar i hålurmar.

Ur konstruktiv synpunkt är det nödvändigt att stadigt sammanbinda den inre och yttre väggen i en hålmur vid överdelen, nederdelen samt vid sidorna av en öppning. Rätta sättet att behandla den övre delen av en öppning visas exempel på i fig. 10, där ett böjligt vattenisolerande skikt infästes så att det sluttar nedåt mot ytterväggen. Lutningen nedåt är nödvändig för att förhindra att fukt från ytterväggen avledas till innerväggen. Ett liknande, nedåt och utåt lutande, vattenisolerande skikt måste insättas omedelbart ovanför alla bjäsklag, som är genomgående till ytterytan.

Vid öppningarnas sidor, där de två murarna nödvändigtvis måste komma i kontakt med varandra i ett vertikalt plan, förhindras spridandet av fukt från ytter- till innerväggen genom att använda ett fast ogenomträngligt material t. ex. skiffer, sintrat tegel eller tegelpannor, som kombinerat vertikalt vattenisolerade skikt och hållfast komponent.

Användningen av skiffer för detta ändamål visas i fig. 11.
Tippvagnar
Räls
Vändskivor Spårväxlar
Hjulpar Rullager
All övrig järnvägsmateriel

Carl Ström A-B
Stockholm C Tel. Växel 23 54 00

SENNA NS FASADTEGEL
maskinformat och handslaget, i vacker, röd färgton är vida känt för sin höga kvalitet.

SENNA NS TEGELBRUK -- TEL. 16 SENNA
ÄGARE:
A.-B. P. OLSON & C:o Hälsingborg Tel. 13536, 15600, 12259
INFOR DRA OFFERT!

A.-B. FÖRENADE TEGELBRUKEN
LINKÖPING — TELEFON 201
rekommerderar sina tillverkningar av
3" x 5" x 10" lätt murtegel 1,6
3" x 5" x 10" högporöst murtegel 1,2
och mellanväggssplattor

STATENS PROVNINGSANSTALT
Tel. 23 01 00

BYGGNADSTEKNISKA AVD. STOCKHOLM
Tel. 23 01 00
Provningar o. undersökningar av material o. konstruktioner. Besiktningar o. provtagningar
Drottning Kristinas Väg, Valhallavägen. Godsadress: Stockholm

WITTINGE TEGELBRUK
25 à 30.000 torkhyllor 1,47 m. långa med plats för 4 st. tvåkupiga taktegel, säljes billigt vid omgående affär.

LUNDQVIST & HUDDENS TEGEL- OCH TRÄVARU AB.
WITTINGE, Tel. nr 3
SÖDERMANS BOKTR. AB
UTFÖR EDRA TRYCKSAKER

LUNTMAKAREGATAN 14
Tel. 111116 - 114189

WESCO RULLAGER
WESCO RULLAGER är lättgående varaktiga och oljebesparande.

En bok om IDROTTSPLATSER
En inventering av principlösningar, tekniska detaljer och mätuppgifter, utförd vid Kungl. Tekniska Högskolans Arkitekturavdelning med en bilaga om INOMHUSSPORT, mätuppgifter m.m., sammanställda av Arkitekt S A R Gustaf Lettström.

102 sidor. Format 17×22 cm.
Pris kr. 10:— + oms-skatt 0:53.
Sändes portofritt om kr. 10:53 insättes på Postgiro Nr 3124

En bok om IDROTTSPLATSER
En inventering av principlösningar, tekniska detaljer och mätuppgifter, utförd vid Kungl. Tekniska Högskolans Arkitekturavdelning med en bilaga om INOMHUSSPORT, mätuppgifter m.m., sammanställda av Arkitekt S A R Gustaf Lettström.

102 sidor. Format 17×22 cm.
Pris kr. 10:— + oms-skatt 0:53.
Sändes portofritt om kr. 10:53 insättes på Postgiro Nr 3124

ISOLERING AV BYGGNADSVERK MED ASFALT OCH TJÄRA av CIVILINGENJÖR FR. SCHÜTZ

En märklig bok som fyller ett stort tomrum i den byggnadstekniska litteraturen

En praktisk handbok för alla isoleringsarbeten mot fukt och vattentryck.
170 sidor. Format 18,5×20 cm.
Pris inbunden kr. 12:— + oms. kr. 0:64.
Sändes portofr. om kr. 12:64 insättes på Postgiro Nr 3124

BYGGMÄSTAREN
FÖRLAGSAVDELNINGEN KUNGSGATAN 32, STOCKHOLM

BYGGMÄSTAREN
FÖRLAGSAVDELNINGEN KUNGSGATAN 32, STOCKHOLM
d) Hålmurar; fukt säkra konstruktioner vid takanslutning.

1) Under snedtak.

A) Taklisten. — Liksom vid massiva väggkonstruktioner bör taklisten skjuta ut så långt som möjligt. Två alternativ finnas.

(1) Hålmuren avslutas med ett eller flera skift av massivt 9”-tegel på vilka vindenklaget vilar. Om denna metod användes, måste man förhindra att fukten sprider från ytterväggen till innerväggen genom att antingen använda ogenomträngligt sintrat tegel murat i ett fuktsäkert murbrukskikt för 9”-teglet eller genom att insätta ett sammanhängande vattenisolerande skikt vid fogen mellan hålmuren och de massiva väggarna.

(II) Hålmuren kan uppföras ända upp till utrymmet under taket. I så fall måste man komma ihåg, att all fuktig luft från hålmuren kommer att passera in i nämnande utrymme, varför detta lämpligen bör kunna ventileras på ett bekvämt sätt.

Då kontakt finnes direkt mellan yttre mur och bjälklag (och sålunda inre muren) bör ett fast vattenisolerande skikt insättas mellan yttre murens övre del och rem murkyttet.

B) Gavelar. — Då gavelns höjd är liten, avslutas hålmuren vanligen i höjd med innertaket med ett par skift av massivt tegel vilande på ett fast vattenisolerande skikt, som överbygger och fullständigt tillsluter hållrummet. (Se fig. 13.)

Då gavelns höjd är stor och vindstrutrymmet därför kan användas som bostad, kan hålmuren uppföras ända upp till yttertaket. (Se fig. 14.)
gångssättet detsamma, som normalt användes för liknande massiva tegelmurverk.

Den effektivaste lösningen av anslutningen mellan bröstvärm och hålsmur är den, där hålrummet fortsätter upp i bröstvärmets såsom visas i fig. 15.

Lägg märke till att det för denna konstruktion är nödvändigt både med ett fast vattenisolerande skikt under muravtäckningen och ett sammanhängande böjligt vattenisolerande skikt, som sträcker sig från undersidan av yttertaket vattenisolerings genom den inre muren och ned till den yttre murens inre yta. Det är emellertid ej nödvändigt att utdraga det böjliga vattenisolerade skiktet genom den yttre muren till dess ytteryta, då det ju är fördelaktigt att den fukt, som samlats på ytterytan får avledas ostört över hela ytan, i stället för att stoppas upp och samlas på bröstvärmets yta. Detta kan i så fall leda till att bröstvärmets yttre mur utsättes för frostskador och ränder av saltutslag, vilka förstört utseendet på många bröstvärn.

Vid en sådan konstruktion måste man förhindra att fukten sprids till den inre muren, antingen genom att anbringa ett vattenisolerande skikt i takkonstruktionen (se fig.) eller genom att insätta ett vattenisolerande skikt mellan den inre murens överytta och taktuglet eller skifferplattorna.

**2) Plana tak.**

Då hålsmuren avslutas under ett plant betongtak och bröstvärm är byggt som ett massivt tegelmurverk, är tillväga-
Ventilation i hålmarar.


Om man håller i minnet, att halmurens primärfunktion är att utesluta fukt och att värmeffekten endast är en sekundär företeelse, förstår man att de flesta byggnadsauktoriteters krav i dag är ventilerade halmurar, varigenom man undviks kondensation och röta.

Det kan emellertid vara intressant att uppmärksamma nyligen gjorda försök vid the Building Research station med väggar i full storlek (9 tum massiva väggar och 11 tum halmurar), vilka vore fullt utsatta för vådrets påfristningar. Försökna visade, att närvaron av ett 2 tum hårniet, utan tvekan ger väggen ett extra värmeständ, vilket framgår av följande siffror, som tagits från redogörelsen över försök:

<table>
<thead>
<tr>
<th>Försöksvägg</th>
<th>Väggens inre värmemetastånd m² h ℃ kcal</th>
<th>Värmeeftergångs av &quot;v&quot; kcal m² h ℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 tum massiv vägg</td>
<td>ca 0,23</td>
<td>2,20</td>
</tr>
<tr>
<td>11 tum halmurar</td>
<td>ca 0,39</td>
<td>1,66</td>
</tr>
</tbody>
</table>

De hittills publicerade försöken ha verkligt belyst på opussade väggar och utan halmurventilation, men dessa modifikationer komma att införas. Vad beträffar den andra faktorn, som ju har stor praktisk betydelse, så har, såvitt man hittills vet, insåttandet av de vanliga hälteglen vid övre delen och i botten av halmuren ingen väsentlig inverkan på halmurens överlägsna värmestånd jämfört med motsvarande massiva vägg.

Material och hantverk.

För ett riktigt utförande kräva halmurar, med undantag av särskilda bindare, precis samma material, som användes vid bygget och av massiva väggar.

Tegel. Endast välbrända tegelstenar bör komma till användning vid uppforandet av yttre mur. Detta gäller varspåriga ytterväggar, försökt installerat, på fasadetegel användes, eller om putsens andra anbringas.

Nödvändigheten av att använda ett fullgott tegel i halmurens yttre mur är tydligt, då en koncentrerad fuktverkan erhålls i denna mur. Det är därför absolut otillräckligt, att för detta ändamål använda underhålliga tegelsorter, vilka döljas med puts.

För den inre muren är alt sådant tegel lämpligt, vilket normalt användes vid bakmurning av massiva tegelmurar.

Bruk. Liksom är fallet vid massiva väggkonstruktioner, är ett kalkcemementbruk (eller likvärdig hydraulisk kalk) att föredraga framför ett rent cementbruk. Avsikten är ju att erhålla optimal bindning mellan tegel och bruk samt både tillräcklig mekanisk hållfasthet och maximal fuktutsättningsförmåga.
En lämplig blandning för normala husbyggnader är:

1 volymdel Portlandcement
2 " kalk
9 " sand.

För flerfångningsbyggnader eller där stora rörliga laster förekomma kan blandningen förstärkas till 1:3:6 och den inre muren kan naturligtvis göras tjockare för att bära de större belastningarna.

Anbringandet av braket: Hantverket.


Det har sagts tillräckligt för att visa att både de horisontella och vertikala fogaerna i en hålmut skola fyllas ordentligt med hänsyn till hålfasthet och fuktåsåkerighet, så att den yttre muren är tillräckligt stabil och slår ifrån sig största möjliga mängd regn, som faller på den. Hittills har endast den yttre muren behandlats, men det är önskvärt att samma fullgoda hantverk användes även för den inre muren, inte så mycket av fuktåsakerhetsskäl, som fastmer av hålfasthetsskäl. I ett ganska stort antal fall av hålmurkonstruktioner uppbläser bjälklagen enbart av den inre muren. Som förut visats har t. o. m. en 4½ tums vägg om den är välbyggd en mycket stor hålfasthetssmarginal för rena tryckpåkängningar. Sådana tunna väggars motståndskraft mot excentriska belastningar, som sträva att knäcka väggen, är dock väsentligt mindre.

(Forts. i nästa n:r.)

TEGELMÄSTARE

Platsen som tegelmästare vid vårt tegelbruk nr 1 (Nya tegelbruket) i Heby är till ansökan ledig. Tillverkningen består av taktegel, rör och blomkrukor. Söken bør ha god teoretisk och praktisk utbildning, vara van arbetsledare samt äga erfarenhet från spec. taktegetillverkning och flamningsbränning. Svar med meriförteckning, betygavskrifter, referenser samt uppgift om lönemål, tidigaste tillträdesdag, civilstånd och militärförhållanden ställas till

A.B. HEBY TEGELBRUK, HEBY,
tel. namnäm. "Heby Tegelverk", Heby (över Sala).
Mälardalens röda fasadtegel

i

Collijns Fabriker

A.-B. MÅLARDALENS TEGELBRUK

Eriksbergsgatan 27  STOCKHOLM  Telefon 233365
EN SVEDALA GRÄVMASKIN
FÖR MINDRE TEGELBRUK

SVEDALA grävmaskin QRS 10 är byggd särskilt för mindre tegelbruk för att göra det möjligt även för dessa att vinna de fördelar, som följa med maskingrävning av leran i jämförelse med grävning för hand.

Några av fördelarna är: lägre grävningskostnad; bättre blandning av leran från de olika skikten i lergropen; förarbetning av leran genom att skoporna under grävningen avskala banken i tunna skivor. Vidare är det möjligt att, om man så önskar, gräva i avsatser, så att olika lager av leran kunna upptagas var för sig.

LITA PÅ BJÖRNSTARKA
SVEDALA MASKINER!

SVEDALA tillverkar alla slags
TEGELBRUKSMASKINER
Kompleta nyanläggningar och modernisering av äldre bruk projekteras.

A-B. Åbjörn Anderson, Svedala

STOCKHOLM
KARLSTAD
TELEFONANROP: GJUTERIET, SVEDALA
FALLUN
GÖTEBORG

Södermans Boktryckeri AB, Stockholm 1945